An active strain electromechanical model for cardiac tissue.
نویسندگان
چکیده
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that there is a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from a Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling and show that our numerical scheme is efficient and accurate.
منابع مشابه
Spiral dynamics in a cardiac electromechanical model with a local electrical inhomogeneity
[Article] Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity Original Citation: Mesin L. (2012). Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity. Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open...
متن کاملTwo-dimensional Axisymmetric Electromechanical Response of Piezoelectric, Functionally Graded and Layered Composite Cylinders
A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered composite hollow circular cylinders of finite length. Under axisymmetric mechanical and electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) plane strain proble...
متن کاملElectromechanical Coupling in Cardiac Dynamics: The Active Strain Approach
The coupling between cardiac mechanics and electric signaling is addressed in a nonstandard framework in which the electrical potential dictates the active strain (not stress) of the muscle. The physiological and mathematical motivations leading us to this choice are illustrated. The propagation of the electric signal is assumed to be governed by the FitzHugh–Nagumo equations, rewritten in mate...
متن کاملA fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملA Discrete Electromechanical Model for Human Cardiac Tissue: Effects of Stretch-Activated Currents and Stretch Conditions on Restitution Properties and Spiral Wave Dynamics
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal for numerical methods in biomedical engineering
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2012